Image characterization and classification by physical complexity
نویسندگان
چکیده
We present a method for estimating the complexity of an image based on Bennett’s concept of logical depth. Bennett identified logical depth as the appropriate measure of organized complexity, and hence as being better suited to the evaluation of the complexity of objects in the physical world. Its use results in a different, and in some sense a finer characterization than is obtained through the application of the concept of Kolmogorov complexity alone. We use this measure to classify images by their information content. The method provides a means for classifying and evaluating the complexity of objects by way of their visual representations. To the authors’ knowledge, the method and application inspired by the concept of logical depth presented herein are being proposed and implemented for the first time.
منابع مشابه
Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملImage information content characterization and classification by physical complexity
We present a method for estimating the complexity of an image based on the concept of logical depth. Unlike the application of the concept of algorithmic complexity by itself, the addition of the concept of logical depth results in a characterization of objects by organizational (physical) complexity. We use this measure to classify images by their information content. The method provides a mea...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملMorphological and Crystallographic Characterization of Nanoparticles by Granulometry Image Analysis and Rietveld Refinement Methods
The particle size distribution of the resultant cobalt ferrite samples was determined from Scanning Electron Microscopy (SEM) images using the granulometry image analysis method. Results showed the nanosized particles of the samples. The X-Ray Diffraction (XRD) patterns of samples were also analyzed by Rietveld refinement method. The results indicated that the precipitated sample at 95 <sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Complexity
دوره 17 شماره
صفحات -
تاریخ انتشار 2012