Image characterization and classification by physical complexity

نویسندگان

  • Hector Zenil
  • Jean-Paul Delahaye
  • Cédric Gaucherel
چکیده

We present a method for estimating the complexity of an image based on Bennett’s concept of logical depth. Bennett identified logical depth as the appropriate measure of organized complexity, and hence as being better suited to the evaluation of the complexity of objects in the physical world. Its use results in a different, and in some sense a finer characterization than is obtained through the application of the concept of Kolmogorov complexity alone. We use this measure to classify images by their information content. The method provides a means for classifying and evaluating the complexity of objects by way of their visual representations. To the authors’ knowledge, the method and application inspired by the concept of logical depth presented herein are being proposed and implemented for the first time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran

An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...

متن کامل

Image information content characterization and classification by physical complexity

We present a method for estimating the complexity of an image based on the concept of logical depth. Unlike the application of the concept of algorithmic complexity by itself, the addition of the concept of logical depth results in a characterization of objects by organizational (physical) complexity. We use this measure to classify images by their information content. The method provides a mea...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP

In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Morphological and Crystallographic Characterization of Nanoparticles by Granulometry Image Analysis and Rietveld Refinement Methods

The particle size distribution of the resultant cobalt ferrite samples was determined from Scanning Electron Microscopy (SEM) images using the granulometry image analysis method. Results showed the nanosized particles of the samples. The X-Ray Diffraction (XRD) patterns of samples were also analyzed by Rietveld refinement method. The results indicated that the precipitated sample at 95 <sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Complexity

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2012